y=-x^2/40+31x/40+4/5

Simple and best practice solution for y=-x^2/40+31x/40+4/5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for y=-x^2/40+31x/40+4/5 equation:


x in (-oo:+oo)

y = ((-x)^2)/40+(31*x)/40+4/5 // - ((-x)^2)/40+(31*x)/40+4/5

y-(((-x)^2)/40)-((31*x)/40)-(4/5) = 0

(-1/40)*x^2+(-31/40)*x+y-4/5 = 0

y-1/40*x^2-31/40*x-4/5 = 0

DELTA = (-31/40)^2-(-1/40*4*(y-4/5))

DELTA = 1/10*(y-4/5)+961/1600

1/10*(y-4/5)+961/1600 = 0

(1/10*1600*(y-4/5))/1600+961/1600 = 0

1/10*1600*(y-4/5)+961 = 0

160*y+833 = 0

(160*y+833)/1600 = 0

(160*y+833)/1600 = 0 // * 1600

160*y+833 = 0

160*y+833 = 0 // - 833

160*y = -833 // : 160

y = -833/160

DELTA = 0 <=> t_1 = -833/160

x = 31/40/(-1/40*2) i y = -833/160

x = -31/2 i y = -833/160

( x = ((1/10*(y-4/5)+961/1600)^(1/2)+31/40)/(-1/40*2) or x = (31/40-(1/10*(y-4/5)+961/1600)^(1/2))/(-1/40*2) ) i y > -833/160

( x = -20*((1/10*(y-4/5)+961/1600)^(1/2)+31/40) or x = -20*(31/40-(1/10*(y-4/5)+961/1600)^(1/2)) ) i y > -833/160

y-(-833/160) > 0

y+833/160 > 0

y+833/160 > 0 // - 833/160

y > -833/160

x in { -31/2, -20*((1/10*(y-4/5)+961/1600)^(1/2)+31/40), -20*(31/40-(1/10*(y-4/5)+961/1600)^(1/2)) }

See similar equations:

| X^2-20x-44=0 | | 4a+9=5-4a | | -46-4x=9x+15 | | T-47=-49 | | K=3s-20 | | x/6-3x/8=x/2-21/3 | | 6x+5y=6000 | | 6t-4t=8t+t | | (27k^6)^2/3 | | 0.2(x+30)+0.2x=10 | | 4x^3/x | | X(7-x)(2x+1)=8 | | 2a-4=3a-6 | | 2/5(3x+1)=2(2-3x)+18 | | 116-5x=6x+23 | | -1+5(x-5)=12x+3-7x | | 101-2x=4x-11 | | (1/(x+1))+(2/(x+2))=4/(x+4) | | 13x+3=3(4x-2)+9 | | 2b+1a= | | ((2k+1)x^2+2(k+3)x)+(k+5)=0 | | 3x+23=5x-11 | | 12a-3a/13=13(a-64) | | 61-2x=25x+22 | | 6x^2-4mx+4n=0 | | 5(x-3)=x+1 | | 10(x-2)=4 | | 10(x-2)= | | x^2(2-x)=0 | | z^2-iz+2=0 | | 235-3x=42x+15 | | 4y+4=3y+19 |

Equations solver categories